Rank 2 preservers on symmetric matrices with zero trace

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adjacency preservers, symmetric matrices, and cores

It is shown that the graph Γn that has the set of all n× n symmetric matrices over a finite field as the vertex set, with two matrices being adjacent if and only if the rank of their difference equals one, is a core if n≥ 3. Eigenvalues of the graph Γn are calculated as well.

متن کامل

On Approximation Problems With Zero-Trace Matrices

12 because the conditions formulated in Corollary 1 are satissed for the problem (??). Therefore we have for every z 2 C jjjI + zBjjj k jjjIjjj k : Hence for every unitarily invariant norm we have by the properties of the unitarily invariant norms jjI + zBjj jjIjj: This completes the proof. 2 The above considerations imply that the characterization of a zero-trace matrix by means of the problem...

متن کامل

Power Indices of Trace Zero Symmetric Boolean Matrices

The power index of a square Boolean matrix A is the least integer d such that A is a linear combination of previous nonnegative powers of A. We determine the maximum power indices for the class of n × n primitive symmetric Boolean matrices of trace zero, the class of n × n irreducible nonprimitive symmetric Boolean matrices, and the class of n×n reducible symmetric Boolean matrices of trace zer...

متن کامل

Linear spaces and preservers of bounded rank-two per-symmetric triangular matrices

Let F be a field and m,n be integers m,n > 3. Let SMn(F) and STn(F) denote the linear space of n × n per-symmetric matrices over F and the linear space of n × n per-symmetric triangular matrices over F, respectively. In this note, the structure of spaces of bounded rank-two matrices of STn(F) is determined. Using this structural result, a classification of bounded rank-two linear preservers ψ :...

متن کامل

Linear Orthogonality Preservers of Hilbert C∗-modules over C∗-algebras with Real Rank Zero

Let A be a C∗-algebra. Let E and F be Hilbert A-modules with E being full. Suppose that θ : E → F is a linear map preserving orthogonality, i.e., 〈θ(x), θ(y)〉 = 0 whenever 〈x, y〉 = 0. We show in this article that if, in addition, A has real rank zero, and θ is an A-module map (not assumed to be bounded), then there exists a central positive multiplier u ∈M(A) such that 〈θ(x), θ(y)〉 = u〈x, y〉 (x...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ITM Web of Conferences

سال: 2021

ISSN: 2271-2097

DOI: 10.1051/itmconf/20213603002